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Abstract
Folding and unfolding kinetics of proteins are affected by the application
of high hydrostatic pressure. In order to study the pressure-related
effects within geometry-based coarse-grained models, we propose adding
a pressure-controlled hump to the contact potentials. This approach
qualitatively reproduces the experimental findings on conformational changes
in staphylococcal nuclease and predicts a non-monotonic dependence of the
unfolding time with pressure. The pressure-induced unfolding is shown to be
distinct from unfolding induced by a high temperature.

1. Introduction

Applying pressure to fluids with proteins is an interesting tool for probing the properties of
proteins [1–6] that has been in use since the beginning of the twentieth century [7]. Pressure
variations are relatively easy to implement. The effects that they cause are expected to be
reversible, since they usually do not involve chemical reactions (a very high pressure could
cause an aggregation of unfolded proteins that could be irreversible). Pressures of around
2–3 kbar can dissociate most oligomeric proteins without any significant changes in sub-
unit conformations [8, 9], whereas pressures above 3–4 kbar begin to unfold monomeric
proteins [10].

Due to instrumental limitations, studies of protein folding and unfolding are usually
performed at pressures below 7 kbar, but some proteins need still higher pressures to unfold.
The pressures needed to induce unfolding can be lowered by the application of chemical
denaturants (like guanidinium hydrochloride or urea), as in studies of the trp repressor [11].
On the other hand, there are proteins that unfold at quite low pressures. Among them, there is
the staphylococcal nuclease, which unfolds at a pressure of about 2 kbar [12].

The elevated pressure slows chemical reactions down (compared to the standard pressure)
and it extends folding/unfolding times [13]. These features are notable, since elongation
of kinetic timescales should facilitate experimental research on protein dynamics. At high
pressures, proteins unfold within a very wide range of times, from seconds to even hours,
which can be made shorter by working at elevated temperatures [14]. The description of the
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Figure 1. Structures of staphylococcal nuclease (1NUC, left) and ubiquitin (1V80, right) in a
cartoon view. The α-helices are shown in the darker shade of grey. The figure was made in
VMD [40].

combined effect of pressure, temperature and sometimes mutations [15] may be complicated.
For instance, the unfolding time of the wild type (wt) staphylococcal nuclease increases with
pressure, but at an elevated temperature, it first rises and then goes down [14]. However,
mutated versions of staphylococcal nuclease may show the unfolding time that decreases with
pressure [15]. This happens when one considers various mutations on the Val-66 residue in the
so-called hyperstable form of staphylococcal nuclease (obtained from the wt through deletion
of a loop, five residue long, and substitutions at five other sites).

In this paper, we focus on modelling of the effects of pressure in coarse-grained models.
All-atom molecular dynamics simulations of proteins provide a detailed description of proteins.
However, they are typically restricted to nanosecond timescales, which are inadequate in
studies of processes involving large conformational changes. There is thus a need to develop
coarse-grained molecular dynamics models that incorporate pressure-related effects. In this
paper, we consider the Go-like approach [16] in which amino acids are represented by single
effective beans located at the positions of the Cα atoms and the effective potentials between
them are chosen phenomenologically, based on the native geometry of the protein under
study. We discuss how these effective potentials need to be modified to include the influence
of the pressure, and then we consider two specific examples of proteins: staphylococcal
nuclease (snase) and ubiquitin. Both of these proteins have underwent studies in high-pressure
experiments. Their native structures are shown in figure 1.

Snase is a protein that contains 149 amino acids and has no disulfide bonds. The radius
of gyration, Rg, of the native structure of snase is about ∼17 Å. 26.2% of the structure is
helices, 24.8% is β-sheets, 7.4% is extended chains, 24.8% is turns and loops, and 8.7% has no
order. The onset of the pressure-induced denaturation of snase takes place at around 1.5 kbar.
On increasing the pressure further to 3 kbar, there is a complete change in the structure: Rg

grows to about 36 Å, the pair distribution function broadens up, and the contents of α helices
and β sheets are lowered drastically [17, 18]. The large value of Rg, however, is smaller
than 45 Å, which characterizes random coil conformations [19]. Furthermore, the observed
relaxation times also grow with increasing pressure [13]. However, any changes introduced to
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snase (mutations) or its environment (elevated temperature) cause changes in the behaviour of
relaxation times [14, 15]. The relaxation processes are dominated by folding at pressures below
1.5 kbar and by unfolding at higher pressures.

Ubiquitin comprises 76 amino acids and also has no disulfide bonds. Its native structure
contains five-strand mixed β-sheet, and a short α-helix. Ubiquitin changes its conformation
slightly at 3 kbar, but it remains globular [20] until the pressure of 5.4 kbar, at which the
denaturation starts to take place. The denaturation process gets completed at 6.4 kbar [21].

Experimental studies performed so far lead to the following insights: (a) proteins usually
decrease their volume upon pressure-induced unfolding [22] and (b) the transition state between
the folded and unfolded states corresponds to a high energy barrier [13]. The first of these
observations indicates that the reduction in volume upon unfolding becomes more and more
important with increasing pressure, and it drives equilibrium toward the unfolded state.

An insight that comes from theory is that pressure appears to affect the potentials of mean
force (PMF) by building energy barriers atop Lennard-Jones-like intermolecular potentials, and
by forming the second energy minimum beyond the barrier. The evidence for this effect follows
from several studies dealing with the influence of pressure on hydrophobic model systems such
as methane molecules placed in water [23–25]. The PMF derived for the methane molecules
through molecular dynamics simulations indicates the emergence of a pressure-induced barrier
that makes a distance between molecules of around 5–6 Å energetically unfavourable. This
barrier grows with pressure and moves to shorter distances. In addition, the binding part of the
potential is observed to become increasingly shallow, and the second energy minimum becomes
deeper. The presence of the barrier is qualitatively related to the behaviour of the effective
volume taken by two molecules when the distance between their centres varies. This effective
volume is defined through the space that is inaccessible to water. When starting from the state
of tight compression, this volume increases with the distance between the two molecules until
one water molecule can fit between them; then it decreases and, eventually, reaches a saturation
value, as illustrated schematically in figure 2. The rise in volume means an increase in the
energy of the system in proportion to the pressure.

The kinetic processes in proteins are often described in terms of the two-state model, i.e. in
terms of the folded, unfolded, and transition states. In pressure-induced unfolding, the volume
variations in these states affect the free energies in a major way which, in addition, is likely to
be specific to a protein. Thus we propose a model that is consistent with the behaviour of wt
staphylococcal nuclease at room temperature.

The idea of including the pressure in simplified models by the introduction of an additional
energy barrier, and the second minimum has been suggested before [26–29]. It has been
implemented both in lattice [28] and continuous models at standard pressure [29]. The
barrier generates an unfavourable region in hydrophobic interactions and thus eliminates
conformations with large effective volumes. It then seems natural to implement such a barrier
in Go-like models. The barrier could be operational in both binding native and repulsive non-
native potentials. However, adding an extra hump to non-native contacts should result primarily
in enlarging the effective size of the hard cores, which prevents entanglements. Thus the novel
pressure-related phenomena should be due mostly to the native contacts.

We focus on the modelling of snase and ubiquitin around room temperature. The
modification of the potential should be compatible with the experimental observations for wt
staphylococcal nuclease, such as: (a) the processes of unfolding and folding become slower
with pressure [13, 30] and (b) the folded state is preferred at atmospheric pressure and unfolded
at higher pressures. The unfolding time of a protein at high pressure is very long—it may even
reach several minutes. In order to make the studies accessible computationally, we consider
barriers that are reduced in height and focus on qualitative features.
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Figure 2. Top panel: the effective volume, V , increases with the distance between two nearby
molecules of methane until at least one solvent molecule can fit between them. Afterwords, it drops
and then stabilizes. Bottom panel: the solid line shows the expected form of the potential, U ,
between two amino acids in contact and in the presence of pressure. The dashed lines correspond
to the VLJ potential.

Our implementation of this phenomenological approach to staphylococcal nuclease is
found to reproduce qualitatively the observed features in folding and unfolding kinetics and
predicts the existence of a non-monotonic dependence of the relevant rates on pressure.

2. Methods

We base our approach on the version of the Go-like model that has been described in [31–34].
A protein is represented by a string of their Cα atoms that are tethered by harmonic springs:

Vtether = 1
2 k(ri,i+1 − r 0

i,i+1)
2, (1)

where ri,i+1 is the distance between two consecutive centres, and r 0
i,i+1 is the distance between

these centres in the native structure. The elasticity constant, k, is taken to be 100 ε Å
−2

.
Additionally, to chain connectivity potentials, the local stiffness of the backbone is maintained
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by chirality potentials,

Vchiral = 1
2ε
(
Ci − CNAT

i

)2
, (2)

where Ci = (�vi−1 × �vi ) · �vi+1/d3
o , �vi = �ri+1 − �ri , and d0 = |vi |. One distinguishes between

native and non-native interactions, or contacts, between the amino acids. The classification is
based on the existence or absence of atomic overlaps in a way suggested by Tsai et al [35]. The
native contacts between amino acids i and j are represented by the Lennard-Jones potential,

VLJ(r) = 4ε

((σi j

r

)12 −
(σi j

r

)6
)

, (3)

where ε is a uniform energy parameter and σi j is a length parameter that is selected so that the
potential minimum corresponds to the native distance between the Cα s. The location of the
minimum, rmin, is related to σi j through the equation rmin = 6

√
2σi j . The non-native contacts

are represented by the Lennard-Jones repulsive cores which are truncated at 4 Å. The time unit
in the model, τ , in Lennard-Jones models of molecular systems is defined as

√
mσ/ε, where m

is the average mass of an amino acid and σ = 5 Å. It should be understood, however, that the
model takes into account interactions with the implicit solvent in an effective, or renormalized,
way and an agreement with experimental timescales is reached when τ is effectively of the
order of nanoseconds. This is around 3 ns according to reference [36] or 0.25 ns according
to hydrodynamics-related arguments of reference [37]. The molecular dynamics simulations
involve solving Newton’s equations of motion together with the Langevin noise that controls
the temperature and provides damping. We use the damping constant γ = 2m/τ that produces
the overdamped dynamics appropriate for proteins in a solvent [31]. That is roughly 25 times
smaller than the damping from water, but our test for larger γ show a linear dependence of
folding times with γ (in the case of a standard Go model without pressure).

In order to adjust this approach to pressure-related effects, it is convenient to begin by
considering a potential in which the notions of the location of a minimum and of its width
are divorced from each other. In the VLJ potential, both quantities are controlled by a single
parameter, σi j . In particular, a large value of rmin corresponds to a broad potential well. In this
paper, instead we introduce an additional parameter s to control the width, independently of the
location of a minimum, and the potential is given by

Vs(r) = 4ε

⎛

⎝

(
s

r − 6
√

2(σi j − s)

)12

−
(

s

r − 6
√

2(σi j − s)

)6
⎞

⎠ . (4)

The parameter s is meant to be uniform—we take 6
√

2s = 5 Å—whereas σi j is adjusted
depending on the required location of the minimum. For s = σi j , Vs(r) coincides with VLJ(r).
Examples of Vs for 6

√
2s = 5 Å and several values of σi j are shown in figure 3.

The presence of a constant width of the potential well with a minimum at rmin facilitates
incorporation of the pressure-related barrier. We expect that the barrier should be small at
atmospheric pressure, and should grow with pressure. The barrier, combined with Vs , should
lead to the formation of a second minimum at a distance of rmin + 3 Å. The distance
of 3 Å corresponds to the size of a water molecule, and the second minimum indicates
the existence of a water-mediated attraction between two amino acids. The locations of
the two minima should depend on the pressure, but the distance between them should stay
approximately constant. Finally, the depth of the potential is expected to diminish with
pressure. All of these conditions are satisfied by the potential VP, which augments Vs by a
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Figure 3. The dependence of the modified Lennard-Jones potential, Vs , (thick lines) and the
standard Lennard-Jones potential (dotted lines) on r . The potentials are described by equation (4)
with 6

√
2s = 5 Å, and 6

√
2σi j = 3, 5, 7, 9 Å (from left to right, respectively). For 6

√
2σi j = 5 Å, both

plots are the same.

hump term. It is defined as

VP(r) = ε

⎛

⎝4

⎛

⎝
(

s

r − 6
√

2(σi j − s)

)12

−
(

s

r − 6
√

2(σi j − s)

)6
⎞

⎠+ A · e−(r−(
6√2σi j +C))2/B

⎞

⎠ ,

(5)

where 6
√

2s is taken to be equal to 5 Å and A, B , and C are parameters that are controlled by
pressure. Specifically, we take

A = P + 0.3
B = −0.43e−2.34A + 0.77
C = 1.4e−1.0A + 0.7,

(6)

where P is a dimensionless control parameter that is proportional to pressure. There are many
possible parameters A, B and C . We chose them carefully to satisfy several assumptions on the
resulting effective potential: (a) there must be two minima with a 3 Å gap between them; (b) at
standard pressure, the first minimum should resemble the original Lennard-Jones potential;
(c) the resulting simulations should give similar behaviour to that observed in experiments.
Figure 4 shows examples of the potential VP for several values of P . Note that the position
of the first minimum keeps changing with increasing pressure more noticeably than that of
the more distant minimum, but their separation remains around 3 Å. The properties of the
system depend on the depth of the potential well and on the height of the barrier. If the well is
sufficiently deep, folding is preferred over unfolding.
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Figure 4. The dependence of the potential VP on r for s = 5 Å and P equal to 0, 1, 2, 3, and 4 from
the bottom to the top, respectively.

3. Results

We first consider the process of folding from an unfolded conformation. As the model protein
folds, it establishes more and more contacts. In the Lennard-Jones-based model, a contact
is considered to be established [31] when the distance between the corresponding Cα atoms
becomes smaller than 1.5σi j (which is close to the inflection point in the potential [38]). Folding
is considered to be accomplished when all of the native contacts are established simultaneously
for the first time.

In the model with the P-dependent potential, the criterion for the existence of a contact
has to be modified. A reasonable expectation is to say that a contact exists if the distance
between the Cα atoms is smaller than the distance to the peak of the barrier. This situation
corresponds to r < rc = rmin + �r , where rmin is the distance between Cα atoms in their
native conformation and �r is the distance between rmin and the top of the hump. Since the
position of the hump changes with pressure, �r should also be a function of P . Approximately,
�r = 1.5e−0.9A + 0.75 (Å) (where A is defined in equation (6)).

The hump sets up a penalty for breaking the contact, and its height determines the timescale
of the process. The interpretation of the second minimum is not straightforward. It might seem
that the second minimum corresponds to residue–residue interactions that are mediated by one
water molecule. However, water molecules may enter available space only at the surface of
a protein and not in buried regions. Thus hydratation levels cannot be determined simply by
counting the contacts established in the secondary minima, as assumed in [29].

Figure 5 compares the dependence of the median folding time on temperature between two
models: with the Lennard-Jones potentials and with the P-dependent potentials for different
pressures, P . The folding times in the latter model are expected to be longer because of
two factors: the presence of the barrier and a tighter criterion for contact establishment. The
presence of the barrier should also move the temperature of optimal folding to higher values.
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Figure 5. The dependence of the median folding times on temperature for snase. The solid lines
represent results obtained in the P-dependent model for different values of P (P = 0.0, filled
squares; P = 0.3, empty squares; P = 0.6, empty diamonds). The dotted line and circles
correspond to the standard Lennard-Jones potential. The results are based on 101 trajectories.
The inset shows a schematic representation of the P–T diagrams for proteins, as proposed by
Smeller [6].

Generally, the latter expectation is fulfilled—with the temperature of optimality shifting from
0.4 to 0.55 kBT/ε. Surprisingly, however, the folding times near the optimal conditions are
actually slightly lower in the model that incorporates the pressure-related barrier than in the
Lennard-Jones-based model. This effect is presumably due to a more precise locking of the
contacts into place if the temperature allows for an adequate diffusion across conformations.
For higher values of P (but still for pressures that keep protein in the folding state) folding times
increase a little. This is reasonable, since the height of the barrier that the system has to pass
gets bigger, so the expected times of diffusion should also become larger. However, the region
of optimal folding moves toward lower temperatures, which seems unexpected. This behaviour
is consistent with the the phase diagram shown in the inset of figure 5. The reason is that,
for higher pressures, proteins became less stable, due to shallower potential wells, resulting in
lower temperatures of denaturation.

The dependence of the folding times on temperature for different values of P , looks
interesting. It is consistent with experimental and theoretical studies which predict an elliptical
region of stability [6] when plotted on the P–T phase diagram (as shown in the inset of
figure 5). The proteins could behave according to either scheme I or scheme II. According
to scheme I, as the pressure grows, the protein may became more stable at the beginning, but
a further pressure increase leads to destabilization and unfolding. According to scheme II, the
protein becomes less stable with the increasing pressure, and it unfolds eventually. However,
it is too early to state that simulations of snase in our model behave according to scheme I
or II. Within our coarse-grained model, the explanation for the elliptical shape is easy. At
standard pressure, the potential for native contacts is fixed—it has one major minimum, with
the depth of ε, and a barrier of some height. As the pressure grows, the position and depth
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Figure 6. The folding scenarios for snase at the respective optimal temperatures in the standard
model (open squares; at kBT = 0.4ε) and the P-dependent model (solid squares; at kBT = 0.55ε).
It should be noted that the median folding time for the protein in the P-dependent model at
kBT = 0.55ε is 6592τ (figure 5), whereas the average time of forming the last contact is 7194τ .
This might seem odd, but it is merely a result of considering quantities that are defined differently
in the statistical ensemble of the trajectories.

of the minimum change, and the barrier height gets enhanced. These factors act in opposite
ways, e.g. an increase in the barrier height stabilizes the folded structure, but an increase in
the potential minimum destabilizes the structure. Either of the two P–T schemes may then
result, depending on which of the two factors wins and this, in turn, may depend on the protein.
Whatever the scheme, very high pressures lead to denaturation.

One can get insights into the details of folding by presenting the so-called folding
scenarios [31] in which one shows the average times of establishing a contact for the first time
during the folding process. In these diagrams, the contact is identified by its sequential distance
|i − j |. Figure 6 indicates that, at its optimal temperature, individual contacts in the standard
model are established sooner than in the P-dependent model. Thus the presence of barriers
stretches the initial stages of the process. The final native state is reached sooner, however,
since the system is more likely not to open contacts once they are established.

We now focus on the pressure-induced unfolding from the native state. We study this
process at the temperature of optimal folding. The simultaneous breakage of all contacts at
this temperature is hard to attain in simulations (for a further discussion, see reference [39]).
We thus divide the contacts into two groups—local, with |i − j | � 4, and non-local—and
consider unfolding to be realized when all non-local contacts are broken. The non-local
contacts constitute about 60% of all contacts in our model. The dependence of the resulting
unfolding times, tunfold, on P is shown in figure 7. The figure suggests that tunfold first decreases
with an increasing P , then reaches a region of optimality (for 1.5 < P < 2.5) and then
rises again. This behaviour suggests that the application of pressure readily initiates unfolding,
but the experimentally observed [13] extension of tunfold should occur only at sufficiently high
pressures. The threshold for the extension depends on the parameters describing the hump in
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Figure 7. Dependence of the median unfolding time on the parameter P . The simulation
temperature was set to be 0.55kBT/ε for snase, and 0.45kBT/ε for ubiquitin. The data points
are based on 101 trajectories.

the potential. Comparison of the unfolding graphs for snase and ubiquitin (figure 7) shows that
ubiquitin is more stable at high pressure than snase (the process of unfolding starts at P = 1.3
for ubiquitin and at P = 1.0 for snase). This feature agrees with experiments qualitatively,
since snase starts to unfold at 1.5 kbar and ubiquitin at 3 kbar.

Another way to characterize the unfolding process is to study the behaviour of the quantity
Q, defined as the fraction of the established native contacts, as a function of time. This is
shown in figure 8 for several values of P . The results average to smooth exponential functions
for P larger than 1.6 and then the functions Q(t) look similar to the relaxation profiles obtained
by Vidugiris et al [13]. It is seen that the characteristic times obtained in this way follow the
behaviour of tunfold shown in figure 7.

Both high pressure and high temperature can denaturate proteins, but the two processes are
distinct. The snase protein consists of several secondary structures; see table 1. While the local
contacts arise and break continuously, the non-local contacts show a structure in the scenario
diagrams. Figure 9 shows that the scenario diagrams for the non-local contacts are different for
the two kinds of unfolding processes. In thermal unfolding, the long-range contacts break the
first and the dependence on | j − i | is mostly monotonic. For the pressure-induced unfolding,
shown for P = 3.5, the scenario is more complicated and with more pronounced time gaps
between various groups of events.

Figure 10 shows the order of unraveling of the native structure of snase by marking the
secondary structures by shades that indicate the time of unraveling them. The main difference
between the temperature and pressure-induced unfolding is stronger stabilization of the helical
region of protein in the latter. In the thermal process, the last breaking contacts were located
in the core of the protein, and contacts that lie at the surface of the protein were broken the
first. For the pressure-induced unfolding, one could observe similar behaviour, but an extended
stability of the helices is distinct.
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Figure 8. Fraction of the native contacts as a function of time during unfolding from the native
state at selected values of the parameter P . The solid line shows an average over 101 trajectories,
whereas the thin lines correspond to examples of individual trajectories.

Table 1. Secondary structures in snase. Each structure has a name that is listed in the last column.

Sequence Structure Name

Gly 55–Glu 67 Helix A
Val 99–Gln 106 Helix B
Glu 122–Lys 134 Helix C
Lys 9–Ala 12 Strand D
Ile 72–Phe 76 Strand E
Gly 88–Ala 94 Strand F
Gln 30–Leu 36 Strand G
Thr 22–Tyr 27 Strand H
Thr 13–Ala 17 Strand I
Val 39–Thr 41 Strand J
Ala 109–Val 111 Strand K

One way to characterize the effects of pressure is to provide average displacement
distances, �r , of the Cα atoms in structures arising at the elevated pressure, relative to the
native structure at the standard pressure. Figure 11 compares �r as obtained in an experimental
nuclear magnetic resonance (NMR) study of ubiquitin by Kitahara [20] to the one obtained
theoretically within our model. We observe qualitative agreement of the theoretical modelling
with the experimental findings, except near the N terminal. (The procedure for determining
�r is outlined in the caption, and it involves overlapping the dynamically obtained structures
with the native structure. Such a procedure is less reliable when it comes to the near-terminal
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Figure 9. The unfolding scenario for snase as induced by temperature (for kBT/ε = 1.0,
P = 0.0, the bottom panel) and by high pressure (for kBT/ε = 0.5, P = 3.5, the top panel).
The duration of contacts is presented as a function of the sequential distance | j − i|, or contact
order, for the contacts. Different shapes of the points describe contacts between different secondary
structures, e.g. contact AB means all contacts between structure A and structure B (see table 1
for the sequential assignment of the secondary structures). The temperature induced unfolding
has a clear pattern of contact breaking: the contact with a large order break earlier than those
with the small contact order. The pressure induced unfolding scenario could be divided into three
zones: (I) contacts that break similar to the temperature unfolding process: e.g. DE (filled circles),
AI (empty squares), EF (cross); (II) contacts that break sooner than in I: DH (empty triangles),
HG (stars), IH (filled diamonds); (III) contacts that break later than in I: AB (filled squares), BC
(empty circle), JK (empty diamonds). The arrows describe major changes in the scenario at lower
pressures, three structure contacts lower their times of breaking, but still remain in area of the late
breaking times.

regions.) The most significant changes are located between helix 22–35 and β-strand 42–46
and then in other segments which either lack secondary structures or correspond to turns. The
reason for this behaviour is that helices and sheets contain more contacts and are thus more
stable. All of the substantially affected regions are located in space just near the C-terminus.

In summary, we have demonstrated that the experimentally known effects of pressure can
be described by a simple coarse-grained geometry-based model by adding a pressure-controlled
hump in the effective potential. We have shown that the unfolding times can be non-monotonic
functions of pressure and have a region of optimality. Our model does not address non-pressure-
related changes in the volume of the protein. The pressure-induced and temperature-induced
unfolding processes proceed differently. This observation, however, is made for snase only, and
could not yet be generalized for all proteins. The simulations for ubiquitin shows that ubiquitin
is stable in a wider range of pressures than snase, and it agrees with experimental observations
for the wild-type snase around room temperature. The results of simulations of ubiquitin at
elevated pressure are also consistent with the NMR studies.
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A B

Figure 10. The native structure of snase shaded according to the time at which contacts between
specific secondary structures are broken. The A and B panels are for the temperature and pressure
induced unfolding respectively. The white, grey, and black shapes correspond to the early, middle,
and late periods of unfolding respectively. For the thermal unfolding, the core of the protein is
affected in the late period, the helices are affected in the middle period, and the β strands on the
surface of the protein are broken in the beginning. For the pressure-induced unfolding, the helices
break the last, the core in the middle period, and the β strands on the surface of the protein at the
beginning. Figure was made in VMD [40].

Figure 11. The average displacement of the Cα atoms in ubiquitin relative to the native structure
for a given sequential position i . The dotted line presents results from the experimental study of
Kitahara [20]. The continuous line and filled circles were obtained theoretically at P = 0.2 and
kBT = 0.4ε. The reference structure, at standard pressure, is represented by the first structure in
the 1V80.pdb file in the PDB. Ten trajectories of duration 100 000τ were considered. 100 structures
were selected and then overlapped on the template structure to determine the displacement. The
procedure of overlapping made use of the program and the server of Zemla [41]. Helices and β-
structures are depicted by thick lines and arrows, respectively, at the top of the graph.
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